Géométrie repérée

Propriété

Soient $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ deux vecteurs **non colinéaires** et soit O un point. Alors,

Propriété

Soient $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ deux vecteurs **non colinéaires** et soit O un point. Alors.

Pour tout point M du plan, il existe un unique couple de nombres réels (x; y) tel que

Propriété

Soient $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ deux vecteurs **non colinéaires** et soit O un point. Alors.

Pour tout point M du plan, il existe un unique couple de nombres réels (x; y) tel que

$$\overrightarrow{OM} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$$

Preuve

Existence

$$_{ imes}^{M}$$

$$0 \times \frac{1}{1}$$

Preuve

Existence

$$_{ imes}^{M}$$

$$O \xrightarrow{J} J$$

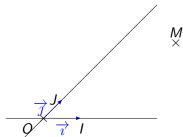
Preuve

Existence

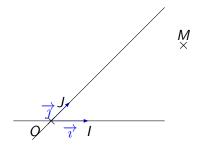
$$_{ imes}^{M}$$

Preuve

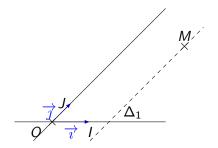
Existence



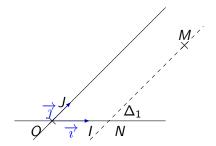
Soit Δ_1 la parallèle à (OJ) passant par M. Comme (OI) et (OJ) ne sont pas parallèles, les droites Δ_1 et (OI) ne sont pas parallèles, on note N leur point d'intersection.



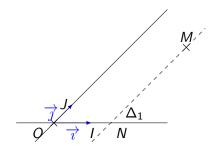
Soit Δ_1 la parallèle à (OJ) passant par M. Comme (OI) et (OJ) ne sont pas parallèles, les droites Δ_1 et (OI) ne sont pas parallèles, on note N leur point d'intersection.



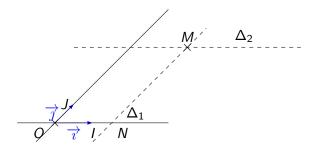
Soit Δ_1 la parallèle à (OJ) passant par M. Comme (OI) et (OJ) ne sont pas parallèles, les droites Δ_1 et (OI) ne sont pas parallèles, on note N leur point d'intersection.



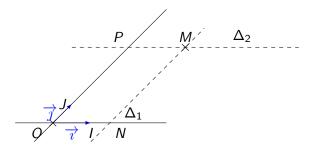
Soit Δ_2 la parallèle à (OI) passant par M. Comme (OI) et (OJ) ne sont pas parallèles, les droites Δ_2 et (OJ) ne sont pas parallèles, on note P leur point d'intersection.



Soit Δ_2 la parallèle à (OI) passant par M. Comme (OI) et (OJ) ne sont pas parallèles, les droites Δ_2 et (OJ) ne sont pas parallèles, on note P leur point d'intersection.



Soit Δ_2 la parallèle à (OI) passant par M. Comme (OI) et (OJ) ne sont pas parallèles, les droites Δ_2 et (OJ) ne sont pas parallèles, on note P leur point d'intersection.



On a alors (ON)//(PM) et (OP)//(NM) donc ONMP est un parallélogramme.

On a alors (ON)/(PM) et (OP)/(NM) donc ONMP est un parallélogramme.

 $\overset{De}{\longrightarrow}$ plus, les points O, I et N sont alignés donc les vecteurs \overrightarrow{OI} et ON sont colinéaires donc il existe un réel x tel que $\overrightarrow{ON} - \overrightarrow{VOI} - \overrightarrow{V}$

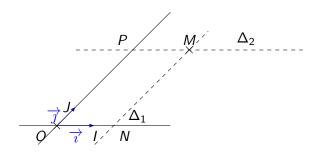
$$\overrightarrow{ON} = x\overrightarrow{OI} = x\overrightarrow{\imath}.$$

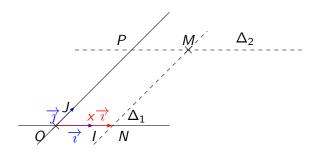
On a alors (ON)//(PM) et (OP)//(NM) donc ONMP est un parallélogramme.

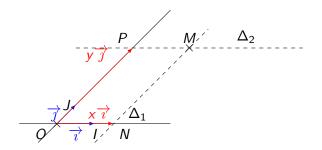
De plus, les points O, I et N sont alignés donc les vecteurs \overrightarrow{OI} et \overrightarrow{ON} sont colinéaires donc il existe un réel x tel que

$$\overrightarrow{ON} = x\overrightarrow{OI} = x\overrightarrow{\imath}.$$

De même, les points O, J et P sont alignés donc les vecteurs \overrightarrow{OJ} et \overrightarrow{OP} sont colinéaires donc il existe un réel y tel que $\overrightarrow{OP} = y\overrightarrow{OJ} = y\overrightarrow{J}$.







D'après la relation de Chasles, on a alors,

$$\overrightarrow{OM} = \overrightarrow{ON} + \overrightarrow{NM}$$

D'après la relation de Chasles, on a alors,

$$\overrightarrow{OM} = \overrightarrow{ON} + \overrightarrow{NM}$$

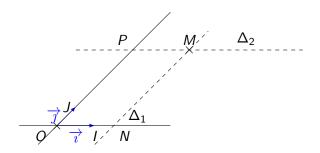
ONMP étant un parallélogramme, $\overrightarrow{OP} = \overrightarrow{NM}$ donc

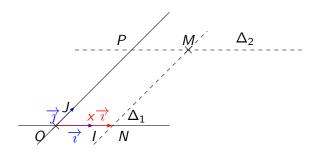
D'après la relation de Chasles, on a alors,

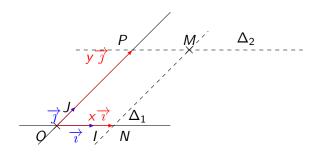
$$\overrightarrow{OM} = \overrightarrow{ON} + \overrightarrow{NM}$$

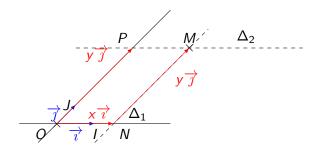
ONMP étant un parallélogramme, $\overrightarrow{OP} = \overrightarrow{NM}$ donc

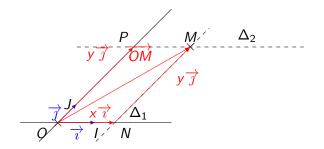
$$\overrightarrow{OM} = \overrightarrow{ON} + \overrightarrow{OP} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$$











Unicité

Soient x' et y' deux réels tels que

$$\overrightarrow{OM} = x'\overrightarrow{\imath} + y'\overrightarrow{\jmath} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$$

Unicité

Soient x' et y' deux réels tels que

$$\overrightarrow{OM} = x'\overrightarrow{\imath} + y'\overrightarrow{\jmath} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$$

On a alors,

Unicité

Soient x' et y' deux réels tels que

$$\overrightarrow{OM} = x'\overrightarrow{\imath} + y'\overrightarrow{\jmath} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$$

On a alors,

$$x'\overrightarrow{\imath} - x\overrightarrow{\imath} = y\overrightarrow{\jmath} - y'\overrightarrow{\jmath}$$

Unicité

Soient x' et y' deux réels tels que

$$\overrightarrow{OM} = x'\overrightarrow{\imath} + y'\overrightarrow{\jmath} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$$

On a alors,

$$x'\overrightarrow{\imath} - x\overrightarrow{\imath} = y\overrightarrow{\jmath} - y'\overrightarrow{\jmath}$$

c'est-à-dire $(x'-x)\overrightarrow{\imath}=(y-y')\overrightarrow{\jmath}$.

Unicité

Soient x' et y' deux réels tels que

$$\overrightarrow{OM} = x'\overrightarrow{\imath} + y'\overrightarrow{\jmath} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$$

On a alors,

$$x'\overrightarrow{\imath} - x\overrightarrow{\imath} = y\overrightarrow{\jmath} - y'\overrightarrow{\jmath}$$

c'est-à-dire $(x'-x)\overrightarrow{i}=(y-y')\overrightarrow{j}$.

Les vecteurs \overrightarrow{i} et \overrightarrow{j} n'étant pas colinéaires, on en déduit que x' - x = 0 et y - y' = 0 d'où l'unicité.

Définitions

Soient O un point et $\overrightarrow{\imath}, \overrightarrow{\jmath}$ deux vecteurs non colinéaires.

Définitions

Soient O un point et $\overrightarrow{\imath}$, $\overrightarrow{\jmath}$ deux vecteurs non colinéaires.

• Le couple de vecteurs $(\overrightarrow{\imath}, \overrightarrow{\jmath})$ est appelée une **base**.

Définitions

Soient O un point et $\overrightarrow{\imath}$, $\overrightarrow{\jmath}$ deux vecteurs non colinéaires.

- Le couple de vecteurs $(\overrightarrow{\imath}, \overrightarrow{\jmath})$ est appelée une **base**.
- Le triplet $(O; \overrightarrow{i}, \overrightarrow{j})$ est appelé un **repère du plan**.

Définitions

Soient O un point et \overrightarrow{i} , \overrightarrow{j} deux vecteurs non colinéaires.

- Le couple de vecteurs $(\overrightarrow{\imath}, \overrightarrow{\jmath})$ est appelée une **base**.
- Le triplet $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ est appelé un **repère du plan**.
- Les réels x, y tels que $\overrightarrow{OM} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$ sont les **coordonnées** du point M dans le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$. On note M(x; y).

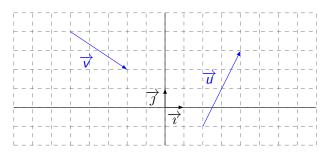
Définitions

Soient O un point et \overrightarrow{i} , \overrightarrow{j} deux vecteurs non colinéaires.

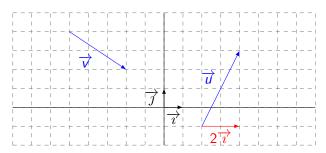
- Le couple de vecteurs $(\overrightarrow{\imath}, \overrightarrow{\jmath})$ est appelée une **base**.
- Le triplet $(O; \overrightarrow{i}, \overrightarrow{j})$ est appelé un **repère du plan**.
- Les réels x, y tels que $\overrightarrow{OM} = x\overrightarrow{\imath} + y\overrightarrow{\jmath}$ sont les **coordonnées** du point M dans le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$. On note M(x; y).
- Les réels x, y tels que $\overrightarrow{OM} = x \overrightarrow{\imath} + y \overrightarrow{\jmath}$ sont les **coordonnées** du vecteur \overrightarrow{OM} dans la base $(\overrightarrow{\imath}, \overrightarrow{\jmath})$. On note $\overrightarrow{OM} \begin{pmatrix} x \\ y \end{pmatrix}$.

Exemple

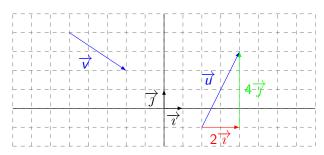
Exemple



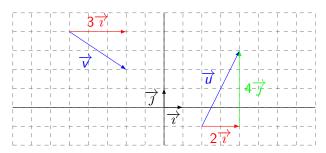
Exemple



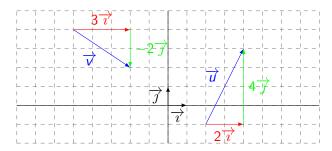
Exemple



Exemple

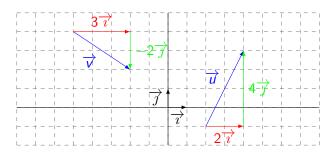


Exemple



Exemple

Déterminer, dans le repère $(O; \overrightarrow{i}, \overrightarrow{j})$, les coordonnées des vecteurs \overrightarrow{u} et \overrightarrow{V} .



On a

$$\overrightarrow{u} \left(\begin{array}{c} 2\\4 \end{array} \right) \qquad \overrightarrow{v} \left(\begin{array}{c} 3\\-2 \end{array} \right)$$

Repères particuliers

Un repère (O; i, j) est orthogonal si et seulement si les vecteurs i et j sont orthogonaux, c'est-à-dire qu'ils forment un angle droit.

Repères particuliers

- Un repère (O; i, j) est orthogonal si et seulement si les vecteurs i et j sont orthogonaux, c'est-à-dire qu'ils forment un angle droit.
- Un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ est **orthonormé** si et seulement si les vecteurs \overrightarrow{i} et \overrightarrow{j} sont orthogonaux **et** de même norme égale à $1 (\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1)$.

Propriétés

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a' \\ b' \end{pmatrix}$.

Propriétés

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a' \\ b' \end{pmatrix}$. Soit k un réel. Alors.

Propriétés

Soient, dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a' \\ b' \end{pmatrix}$. Soit k un réel.

Alors,

• $\overrightarrow{u} = \overrightarrow{v}$ si et seulement si a = a' et b = b'.

Propriétés

Soient, dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a' \\ b' \end{pmatrix}$. Soit k un réel.

Alors,

- $\overrightarrow{u} = \overrightarrow{v}$ si et seulement si a = a' et b = b'.
- Le vecteur $\overrightarrow{u} + \overrightarrow{v}$ a pour coordonnées $\begin{pmatrix} a + a' \\ b + b' \end{pmatrix}$

Propriétés

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a' \\ b' \end{pmatrix}$. Soit k un réel.

Alors,

- $\overrightarrow{u} = \overrightarrow{v}$ si et seulement si a = a' **et** b = b'.
- ullet Le vecteur $\overrightarrow{u}+\overrightarrow{v}$ a pour coordonnées $\left(egin{array}{c} a+a' \ b+b' \end{array}
 ight)$
- Le vecteur $k \overrightarrow{u}$ a pour coordonnées $\begin{pmatrix} ka \\ kb \end{pmatrix}$

Preuve

Par définition des coordonnées d'un vecteur, on sait que

Preuve

Par définition des coordonnées d'un vecteur, on sait que

$$\overrightarrow{u} = a\overrightarrow{\imath} + b\overrightarrow{\jmath}$$
 $\overrightarrow{v} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$

Preuve

Par définition des coordonnées d'un vecteur, on sait que

$$\overrightarrow{U} = a\overrightarrow{\imath} + b\overrightarrow{\jmath}$$
 $\overrightarrow{V} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$

• Si a = a' et si b = b' alors il est évident que $\overrightarrow{u} = \overrightarrow{v}$.

Preuve

Par définition des coordonnées d'un vecteur, on sait que

$$\overrightarrow{U} = a\overrightarrow{\imath} + b\overrightarrow{\jmath}$$
 $\overrightarrow{V} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$

• Si a = a' et si b = b' alors il est évident que $\overrightarrow{u} = \overrightarrow{V}$. Réciproquement, si $\overrightarrow{u} = \overrightarrow{V}$ alors

Preuve

Par définition des coordonnées d'un vecteur, on sait que

$$\overrightarrow{U} = a\overrightarrow{\imath} + b\overrightarrow{\jmath}$$
 $\overrightarrow{V} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$

• Si a = a' et si b = b' alors il est évident que $\overrightarrow{u} = \overrightarrow{v}$. Réciproquement, si $\overrightarrow{u} = \overrightarrow{v}$ alors $a\overrightarrow{v} + b\overrightarrow{\jmath} = a'\overrightarrow{v} + b'\overrightarrow{\jmath}$

Preuve

Par définition des coordonnées d'un vecteur, on sait que

$$\overrightarrow{U} = a\overrightarrow{\imath} + b\overrightarrow{\jmath}$$
 $\overrightarrow{V} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$

• Si a = a' et si b = b' alors il est évident que $\overrightarrow{u} = \overrightarrow{v}$. Réciproquement, si $\overrightarrow{u} = \overrightarrow{v}$ alors $a\overrightarrow{i} + b\overrightarrow{j} = a'\overrightarrow{i} + b'\overrightarrow{j}$ donc $(a - a')\overrightarrow{i} = (b' - b)\overrightarrow{j}$.

Preuve

Par définition des coordonnées d'un vecteur, on sait que

$$\overrightarrow{U} = a\overrightarrow{\imath} + b\overrightarrow{\jmath}$$
 $\overrightarrow{V} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$

• Si a=a' et si b=b' alors il est évident que $\overrightarrow{u}=\overrightarrow{v}$. Réciproquement, si $\overrightarrow{u}=\overrightarrow{v}$ alors $a\overrightarrow{\imath}+b\overrightarrow{\jmath}=a'\overrightarrow{\imath}+b'\overrightarrow{\jmath}$ donc $(a-a')\overrightarrow{\imath}=(b'-b)\overrightarrow{\jmath}$. Les vecteurs $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ n'étant pas colinéaires, on en déduit que a-a'=0 et b'-b=0 d'où le résultat.

Preuve

Par définition des coordonnées d'un vecteur, on sait que

$$\overrightarrow{U} = a\overrightarrow{\imath} + b\overrightarrow{\jmath}$$
 $\overrightarrow{V} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$

- Si a = a' et si b = b' alors il est évident que $\overrightarrow{u} = \overrightarrow{v}$. Réciproquement, si $\overrightarrow{u} = \overrightarrow{v}$ alors $a\overrightarrow{\imath} + b\overrightarrow{\jmath} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$ donc $(a - a')\overrightarrow{\imath} = (b' - b)\overrightarrow{\jmath}$. Les vecteurs $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ n'étant pas colinéaires, on en déduit que a - a' = 0 et b' - b = 0 d'où le résultat.
- $\bullet \overrightarrow{u} + \overrightarrow{v} = (a\overrightarrow{\imath} + b\overrightarrow{\jmath}) + (a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}) = (a + a')\overrightarrow{\imath} + (b + b')\overrightarrow{\jmath}.$

Preuve

Par définition des coordonnées d'un vecteur, on sait que

$$\overrightarrow{U} = a\overrightarrow{\imath} + b\overrightarrow{\jmath}$$
 $\overrightarrow{V} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$

- Si a = a' et si b = b' alors il est évident que $\overrightarrow{u} = \overrightarrow{v}$. Réciproquement, si $\overrightarrow{u} = \overrightarrow{v}$ alors $a\overrightarrow{\imath} + b\overrightarrow{\jmath} = a'\overrightarrow{\imath} + b'\overrightarrow{\jmath}$ donc $(a - a')\overrightarrow{\imath} = (b' - b)\overrightarrow{\jmath}$. Les vecteurs $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ n'étant pas colinéaires, on en déduit que a - a' = 0 et b' - b = 0 d'où le résultat.
- $\bullet \overrightarrow{u} + \overrightarrow{v} = (a\overrightarrow{i} + b\overrightarrow{j}) + (a'\overrightarrow{i} + b'\overrightarrow{j}) = (a + a')\overrightarrow{i} + (b + b')\overrightarrow{j}.$
- $k\overrightarrow{u} = k(a\overrightarrow{\imath} + b\overrightarrow{\jmath}) = ka\overrightarrow{\imath} + kb\overrightarrow{\jmath}$.

Exemple

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Exemple

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Calculer les coordonnées des vecteurs $3\overrightarrow{u}$, $-2\overrightarrow{v}$, $5\overrightarrow{u}-3\overrightarrow{v}$.

Exemple

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Calculer les coordonnées des vecteurs $3\overrightarrow{u}$, $-2\overrightarrow{v}$, $5\overrightarrow{u}-3\overrightarrow{v}$.

Exemple

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et

$$\overrightarrow{V}$$
 $\begin{pmatrix} 2\\1 \end{pmatrix}$.

Calculer les coordonnées des vecteurs $3\overrightarrow{u}$, $-2\overrightarrow{v}$, $5\overrightarrow{u}-3\overrightarrow{v}$.

$$\bullet \ 3\overrightarrow{u} \left(\begin{array}{c} 3\times (-1) \\ 3\times 3 \end{array}\right)$$

Exemple

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et

$$\overrightarrow{V}$$
 $\begin{pmatrix} 2\\1 \end{pmatrix}$.

Calculer les coordonnées des vecteurs $3\overrightarrow{u}$, $-2\overrightarrow{v}$, $5\overrightarrow{u}-3\overrightarrow{v}$.

•
$$3\overrightarrow{u}\begin{pmatrix} 3\times(-1)\\ 3\times3 \end{pmatrix}$$
 donc $3\overrightarrow{u}\begin{pmatrix} -3\\ 9 \end{pmatrix}$;

Exemple

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et

$$\overrightarrow{V}$$
 $\begin{pmatrix} 2\\1 \end{pmatrix}$.

Calculer les coordonnées des vecteurs $3\overrightarrow{u}$, $-2\overrightarrow{v}$, $5\overrightarrow{u}$ $-3\overrightarrow{v}$.

•
$$3\overrightarrow{u}\begin{pmatrix} 3\times(-1)\\ 3\times3 \end{pmatrix}$$
 donc $3\overrightarrow{u}\begin{pmatrix} -3\\ 9 \end{pmatrix}$;

$$\bullet$$
 $-2\overrightarrow{v}\begin{pmatrix} -2\times2\\ -2\times1 \end{pmatrix}$

Exemple

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

Calculer les coordonnées des vecteurs $3\overrightarrow{u}$, $-2\overrightarrow{v}$, $5\overrightarrow{u}-3\overrightarrow{v}$.

•
$$3\overrightarrow{u}$$
 $\begin{pmatrix} 3 \times (-1) \\ 3 \times 3 \end{pmatrix}$ donc $3\overrightarrow{u}$ $\begin{pmatrix} -3 \\ 9 \end{pmatrix}$;

•
$$-2\overrightarrow{v}\begin{pmatrix} -2\times2\\ -2\times1 \end{pmatrix}$$
 donc $-2\overrightarrow{v}\begin{pmatrix} -4\\ -2 \end{pmatrix}$;

•
$$5\overrightarrow{u}$$
 $\begin{pmatrix} 5 \times (-1) \\ 5 \times 3 \end{pmatrix}$ et $-3\overrightarrow{v}$ $\begin{pmatrix} -3 \times 2 \\ -3 \times 1 \end{pmatrix}$

•
$$5\overrightarrow{u}$$
 $\begin{pmatrix} 5 \times (-1) \\ 5 \times 3 \end{pmatrix}$ et $-3\overrightarrow{v}$ $\begin{pmatrix} -3 \times 2 \\ -3 \times 1 \end{pmatrix}$ donc $5\overrightarrow{u} - 3\overrightarrow{v}$ $\begin{pmatrix} -5 - 6 \\ 15 - 3 \end{pmatrix}$

$$\begin{array}{c} \bullet \ 5 \overrightarrow{u} \left(\begin{array}{c} 5 \times (-1) \\ 5 \times 3 \end{array} \right) \ et \ -3 \overrightarrow{v} \left(\begin{array}{c} -3 \times 2 \\ -3 \times 1 \end{array} \right) \ donc \\ 5 \overrightarrow{u} - 3 \overrightarrow{v} \left(\begin{array}{c} -5 - 6 \\ 15 - 3 \end{array} \right) \ donc \ 5 \overrightarrow{u} - 3 \overrightarrow{v} \left(\begin{array}{c} -11 \\ 12 \end{array} \right). \end{array}$$

Propriété

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan, les points $A(x_A; y_A)$ et $B(x_B; y_B)$.

Propriété

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan, les points $A(x_A; y_A)$ et $B(x_B; y_B)$.

Alors, le vecteur \overrightarrow{AB} a pour coordonnées

Propriété

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan, les points $A(x_A; y_A)$ et $B(x_B; y_B)$.

Alors, le vecteur \overrightarrow{AB} a pour coordonnées

$$\overrightarrow{AB} \left(\begin{array}{c} x_B - x_A \\ y_B - y_A \end{array} \right)$$

Preuve

Par définition des coordonnées d'un point, on sait que

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath}$$

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath} \qquad \overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$$

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath} \qquad \overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$$

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath} \qquad \overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$$

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath} \qquad \overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$$

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB}$$

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath} \qquad \overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$$

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$$

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath} \qquad \overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$$

D'après la relation de Chasles, on a

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$$

donc,

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath} \qquad \overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$$

D'après la relation de Chasles, on a

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$$

donc,

$$\overrightarrow{AB} = (x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}) - (x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath})$$

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath}$$
 $\overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$

D'après la relation de Chasles, on a

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$$

donc,

$$\overrightarrow{AB} = (x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}) - (x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath})$$

$$\overrightarrow{AB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath} - x_A \overrightarrow{\imath} - y_A \overrightarrow{\jmath}$$

Preuve

Par définition des coordonnées d'un point, on sait que

$$\overrightarrow{OA} = x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath} \qquad \overrightarrow{OB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}$$

D'après la relation de Chasles, on a

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA}$$

donc,

$$\overrightarrow{AB} = (x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath}) - (x_A \overrightarrow{\imath} + y_A \overrightarrow{\jmath})$$

$$\overrightarrow{AB} = x_B \overrightarrow{\imath} + y_B \overrightarrow{\jmath} - x_A \overrightarrow{\imath} - y_A \overrightarrow{\jmath} = (x_B - x_A) \overrightarrow{\imath} + (y_B - y_A) \overrightarrow{\jmath}$$

D'où le résultat.

Exemple

Soient, dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, les points A(-6; 7), B(4; 1), C(14; 23) et D(4; 29).

Exemple

Soient, dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, les points A(-6; 7), B(4; 1), C(14; 23) et D(4; 29). Démontrer que le quadrilatère ABCD est un parallélogramme.

Exemple

Soient, dans un repère $(O; \overrightarrow{v}, \overrightarrow{\jmath})$ du plan, les points A(-6; 7), B(4; 1), C(14; 23) et D(4; 29). Démontrer que le quadrilatère ABCD est un parallélogramme.

ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$. Or, on a

Exemple

Soient, dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, les points A(-6; 7), B(4; 1), C(14; 23) et D(4; 29).

Démontrer que le quadrilatère ABCD est un parallélogramme.

ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$. Or, on a

$$\overrightarrow{AB}$$
 $\begin{pmatrix} 4-(-6) \\ 1-7 \end{pmatrix}$ \overrightarrow{DC} $\begin{pmatrix} 14-4 \\ 23-29 \end{pmatrix}$

Exemple

Soient, dans un repère $(O; \overrightarrow{v}, \overrightarrow{\jmath})$ du plan, les points A(-6; 7), B(4; 1), C(14; 23) et D(4; 29). Démontrer que le quadrilatère ABCD est un parallélogramme.

ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$. Or, on a

$$\overrightarrow{AB} \begin{pmatrix} 4 - (-6) \\ 1 - 7 \end{pmatrix} \qquad \overrightarrow{DC} \begin{pmatrix} 14 - 4 \\ 23 - 29 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} 10 \\ -6 \end{pmatrix} \qquad \overrightarrow{DC} \begin{pmatrix} 10 \\ -6 \end{pmatrix}$$

Exemple

Soient, dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ du plan, les points A(-6; 7), B(4; 1), C(14; 23) et D(4; 29). Démontrer que le quadrilatère ABCD est un parallélogramme.

ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$. Or, on

a

$$\overrightarrow{AB} \begin{pmatrix} 4 - (-6) \\ 1 - 7 \end{pmatrix} \qquad \overrightarrow{DC} \begin{pmatrix} 14 - 4 \\ 23 - 29 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} 10 \\ -6 \end{pmatrix} \qquad \overrightarrow{DC} \begin{pmatrix} 10 \\ -6 \end{pmatrix}$$

 \overrightarrow{AB} et \overrightarrow{DC} ont leurs coordonnées identiques donc ils sont égaux donc ABCD est un parallélogramme.

Propriété

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan, les points $A(x_A; y_A)$ et $B(x_B; y_B)$.

Propriété

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan, les points $A(x_A; y_A)$ et $B(x_B; y_B)$.

Alors, I le milieu du segment [AB] a pour coordonnées

Propriété

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan, les points $A(x_A; y_A)$ et $B(x_B; y_B)$.

Alors, I le milieu du segment [AB] a pour coordonnées

$$I\left(\frac{x_B+x_A}{2};\frac{y_B+y_A}{2}\right)$$

Preuve

I est le milieu du segment [AB] donc, $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$.

Preuve

I est le milieu du segment [AB] donc, $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$.

En notant $(x_I; y_I)$ les coordonnées du point I, on obtient que le vecteur \overrightarrow{AI} a pour coordonnées

Preuve

I est le milieu du segment [AB] donc, $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$.

En notant $(x_I; y_I)$ les coordonnées du point I, on obtient que le vecteur \overrightarrow{AI} a pour coordonnées $\begin{pmatrix} x_I - x_A \\ y_I - y_A \end{pmatrix}$.

Preuve

I est le milieu du segment [AB] donc, $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$.

En notant $(x_I; y_I)$ les coordonnées du point I, on obtient que le vecteur \overrightarrow{AI} a pour coordonnées $\begin{pmatrix} x_I - x_A \\ y_I - y_A \end{pmatrix}$.

Le vecteur \overrightarrow{AB} ayant pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$, on en déduit que le vecteur $\frac{1}{2}\overrightarrow{AB}$ a pour coordonnées

Preuve

I est le milieu du segment [AB] donc, $\overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB}$.

En notant $(x_I; y_I)$ les coordonnées du point I, on obtient que le vecteur \overrightarrow{AI} a pour coordonnées $\begin{pmatrix} x_I - x_A \\ y_I - y_A \end{pmatrix}$.

Le vecteur \overrightarrow{AB} ayant pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$, on en déduit que le vecteur $\frac{1}{2}\overrightarrow{AB}$ a pour coordonnées

$$\left(\begin{array}{c} \frac{x_B - x_A}{2} \\ \frac{y_B - y_A}{2} \end{array}\right)$$

Les vecteurs \overrightarrow{AI} et $\frac{1}{2}\overrightarrow{AB}$ étant égaux, on en déduit que

Les vecteurs \overrightarrow{AI} et $\frac{1}{2}\overrightarrow{AB}$ étant égaux, on en déduit que

$$x_I - x_A = \frac{x_B - x_A}{2}$$

Les vecteurs \overrightarrow{AI} et $\frac{1}{2}\overrightarrow{AB}$ étant égaux, on en déduit que

$$x_{I} - x_{A} = \frac{x_{B} - x_{A}}{2}$$
 et $y_{I} - y_{A} = \frac{y_{B} - y_{A}}{2}$

Les vecteurs \overrightarrow{AI} et $\frac{1}{2}\overrightarrow{AB}$ étant égaux, on en déduit que

$$x_{I} - x_{A} = \frac{x_{B} - x_{A}}{2}$$
 et $y_{I} - y_{A} = \frac{y_{B} - y_{A}}{2}$

$$x_I = \frac{x_B - x_A}{2} + x_A$$

Les vecteurs \overrightarrow{AI} et $\frac{1}{2}\overrightarrow{AB}$ étant égaux, on en déduit que

$$x_{I} - x_{A} = \frac{x_{B} - x_{A}}{2}$$
 et $y_{I} - y_{A} = \frac{y_{B} - y_{A}}{2}$

$$x_{I} = \frac{x_{B} - x_{A}}{2} + x_{A} = \frac{x_{B} - x_{A} + 2x_{A}}{2}$$
 et

Les vecteurs \overrightarrow{AI} et $\frac{1}{2}\overrightarrow{AB}$ étant égaux, on en déduit que

$$x_{I} - x_{A} = \frac{x_{B} - x_{A}}{2}$$
 et $y_{I} - y_{A} = \frac{y_{B} - y_{A}}{2}$

$$x_{I} = \frac{x_{B} - x_{A}}{2} + x_{A} = \frac{x_{B} - x_{A} + 2x_{A}}{2}$$
 et
$$y_{I} = \frac{y_{B} - y_{A}}{2} + y_{A} =$$

Les vecteurs \overrightarrow{AI} et $\frac{1}{2}\overrightarrow{AB}$ étant égaux, on en déduit que

$$x_{I} - x_{A} = \frac{x_{B} - x_{A}}{2}$$
 et $y_{I} - y_{A} = \frac{y_{B} - y_{A}}{2}$

$$x_I = \frac{x_B - x_A}{2} + x_A = \frac{x_B - x_A + 2x_A}{2}$$
 et
 $y_I = \frac{y_B - y_A}{2} + y_A = \frac{y_B - y_A + 2y_A}{2}$

Les vecteurs \overrightarrow{AI} et $\frac{1}{2}\overrightarrow{AB}$ étant égaux, on en déduit que

$$x_{I} - x_{A} = \frac{x_{B} - x_{A}}{2}$$
 et $y_{I} - y_{A} = \frac{y_{B} - y_{A}}{2}$

donc

$$x_I = \frac{x_B - x_A}{2} + x_A = \frac{x_B - x_A + 2x_A}{2}$$
 et

$$y_I = \frac{y_B - y_A}{2} + y_A = \frac{y_B - y_A + 2y_A}{2}$$

soit

$$x_I = \frac{x_B + x_A}{2}$$
 et $y_I = \frac{y_B + y_A}{2}$

Propriété

Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ orthonormé du plan, les points $A(x_A; y_A)$ et $B(x_B; y_B)$.

Propriété

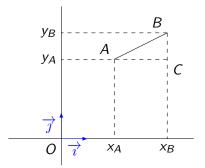
Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ **orthonormé** du plan, les points $A(x_A; y_A)$ et $B(x_B; y_B)$. Alors, la longueur AB vaut

Propriété

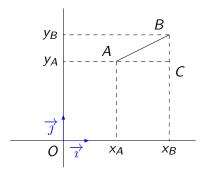
Soient, dans un repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ **orthonormé** du plan, les points $A(x_A; y_A)$ et $B(x_B; y_B)$. Alors, la longueur AB vaut

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Preuve Soit le point $C(x_B; y_A)$.

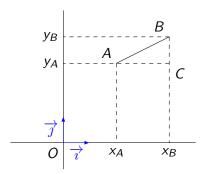


Preuve Soit le point $C(x_B; y_A)$.



Les vecteurs \overrightarrow{AC} et \overrightarrow{CB} ont alors pour coordonnées

Preuve Soit le point $C(x_B; y_A)$.



Les vecteurs \overrightarrow{AC} et \overrightarrow{CB} ont alors pour coordonnées

$$\overrightarrow{AC} \begin{pmatrix} x_B - x_A \\ 0 \end{pmatrix} \qquad \overrightarrow{CB} \begin{pmatrix} 0 \\ y_B - y_A \end{pmatrix}$$

Donc,
$$\overrightarrow{AC} = (x_B - x_A)\overrightarrow{\imath}$$
 et $\overrightarrow{CB} = (y_B - y_A)\overrightarrow{\jmath}$.

Donc,
$$\overrightarrow{AC} = (x_B - x_A)\overrightarrow{\imath}$$
 et $\overrightarrow{CB} = (y_B - y_A)\overrightarrow{\jmath}$.

Les vecteurs \overrightarrow{AC} et $\overrightarrow{\imath}$ sont donc colinéaires, tout comme les vecteurs \overrightarrow{CB} et $\overrightarrow{\jmath}$.

Donc,
$$\overrightarrow{AC} = (x_B - x_A)\overrightarrow{\imath}$$
 et $\overrightarrow{CB} = (y_B - y_A)\overrightarrow{\jmath}$.

Les vecteurs \overrightarrow{AC} et $\overrightarrow{\imath}$ sont donc colinéaires, tout comme les vecteurs \overrightarrow{CB} et $\overrightarrow{\jmath}$.

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ forment donc un angle droit donc les vecteurs \overrightarrow{AC} et \overrightarrow{CB} forment donc aussi un angle droit.

Donc,
$$\overrightarrow{AC} = (x_B - x_A)\overrightarrow{\imath}$$
 et $\overrightarrow{CB} = (y_B - y_A)\overrightarrow{\jmath}$.

Les vecteurs \overrightarrow{AC} et $\overrightarrow{\imath}$ sont donc colinéaires, tout comme les vecteurs \overrightarrow{CB} et $\overrightarrow{\jmath}$.

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ forment donc un angle droit donc les vecteurs \overrightarrow{AC} et \overrightarrow{CB} forment donc aussi un angle droit. Le triangle ABC est donc rectangle en C.

Donc,
$$\overrightarrow{AC} = (x_B - x_A)\overrightarrow{\imath}$$
 et $\overrightarrow{CB} = (y_B - y_A)\overrightarrow{\jmath}$.

Les vecteurs \overrightarrow{AC} et $\overrightarrow{\imath}$ sont donc colinéaires, tout comme les vecteurs \overrightarrow{CB} et $\overrightarrow{\jmath}$.

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ forment donc un angle droit donc les vecteurs \overrightarrow{AC} et \overrightarrow{CB} forment donc aussi un angle droit. Le triangle ABC est donc rectangle en C.

D'après le théorème de Pythagore, on a alors

Donc,
$$\overrightarrow{AC} = (x_B - x_A)\overrightarrow{\imath}$$
 et $\overrightarrow{CB} = (y_B - y_A)\overrightarrow{\jmath}$.

Les vecteurs \overrightarrow{AC} et $\overrightarrow{\imath}$ sont donc colinéaires, tout comme les vecteurs \overrightarrow{CB} et $\overrightarrow{\jmath}$.

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ forment donc un angle droit donc les vecteurs \overrightarrow{AC} et \overrightarrow{CB} forment donc aussi un angle droit. Le triangle ABC est donc rectangle en C.

D'après le théorème de Pythagore, on a alors

$$AB^2 = AC^2 + BC^2$$

Donc,
$$\overrightarrow{AC} = (x_B - x_A)\overrightarrow{\imath}$$
 et $\overrightarrow{CB} = (y_B - y_A)\overrightarrow{\jmath}$.

Les vecteurs \overrightarrow{AC} et $\overrightarrow{\imath}$ sont donc colinéaires, tout comme les vecteurs \overrightarrow{CB} et $\overrightarrow{\jmath}$.

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ forment donc un angle droit donc les vecteurs \overrightarrow{AC} et \overrightarrow{CB} forment donc aussi un angle droit. Le triangle ABC est donc rectangle en C.

D'après le théorème de Pythagore, on a alors

$$AB^2 = AC^2 + BC^2$$

Or,

Donc,
$$\overrightarrow{AC} = (x_B - x_A)\overrightarrow{\imath}$$
 et $\overrightarrow{CB} = (y_B - y_A)\overrightarrow{\jmath}$.

Les vecteurs \overrightarrow{AC} et $\overrightarrow{\imath}$ sont donc colinéaires, tout comme les vecteurs \overrightarrow{CB} et $\overrightarrow{\jmath}$.

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ forment donc un angle droit donc les vecteurs \overrightarrow{AC} et \overrightarrow{CB} forment donc aussi un angle droit. Le triangle ABC est donc rectangle en C.

D'après le théorème de Pythagore, on a alors

$$AB^2 = AC^2 + BC^2$$

Or,

•
$$AC = \|\overrightarrow{AC}\| = \|(x_B - x_A)\overrightarrow{\imath}\| = |x_B - x_A| \times \|\overrightarrow{\imath}\|$$

Donc,
$$\overrightarrow{AC} = (x_B - x_A)\overrightarrow{\imath}$$
 et $\overrightarrow{CB} = (y_B - y_A)\overrightarrow{\jmath}$.

Les vecteurs \overrightarrow{AC} et $\overrightarrow{\imath}$ sont donc colinéaires, tout comme les vecteurs \overrightarrow{CB} et $\overrightarrow{\jmath}$.

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\overrightarrow{\imath}$ et $\overrightarrow{\jmath}$ forment donc un angle droit donc les vecteurs \overrightarrow{AC} et \overrightarrow{CB} forment donc aussi un angle droit. Le triangle ABC est donc rectangle en C.

D'après le théorème de Pythagore, on a alors

$$AB^2 = AC^2 + BC^2$$

Or,

•
$$AC = \|\overrightarrow{AC}\| = \|(x_B - x_A)\overrightarrow{\imath}\| = |x_B - x_A| \times \|\overrightarrow{\imath}\|$$

•
$$CB = \|\overrightarrow{CB}\| = \|(y_B - y_A)\overrightarrow{\jmath}\| = |y_B - y_A| \times \|\overrightarrow{\jmath}\|$$

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1$ donc

Le repère $(O;\overrightarrow{\imath},\overrightarrow{\jmath})$ étant orthonormé, $\|\overrightarrow{\imath}\|=\|\overrightarrow{\jmath}\|=1$ donc

$$AC = |x_B - x_A|$$

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1$ donc

• $AC = |x_B - x_A| \text{ donc } AC^2 = (x_B - x_A)^2$.

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1$ donc

- $AC = |x_B x_A| \text{ donc } AC^2 = (x_B x_A)^2$.
- $\bullet \ CB = |y_B y_A|$

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1$ donc

- $AC = |x_B x_A| \text{ donc } AC^2 = (x_B x_A)^2$.
- $CB = |y_B y_A| \ donc \ CB^2 = (y_B y_A)^2$.

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1$ donc

- $AC = |x_B x_A| \text{ donc } AC^2 = (x_B x_A)^2$.
- $CB = |y_B y_A| \ donc \ CB^2 = (y_B y_A)^2$.

On en déduit que

$$AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

Le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ étant orthonormé, $\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1$ donc

•
$$AC = |x_B - x_A| \text{ donc } AC^2 = (x_B - x_A)^2$$
.

•
$$CB = |y_B - y_A| \ donc \ CB^2 = (y_B - y_A)^2$$
.

On en déduit que

$$AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$

donc

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les points A(-1; 5) et B(2; 1).

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les points A(-1; 5) et B(2; 1).

a. Calculer les coordonnées du point I milieu de [AB].

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$, les points A(-1; 5) et B(2; 1).

- a. Calculer les coordonnées du point I milieu de [AB].
- b. Calculer la longueur du segment [AB].

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$, les points A(-1; 5) et B(2; 1).

- a. Calculer les coordonnées du point I milieu de [AB].
- b. Calculer la longueur du segment [AB].

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les points A(-1; 5) et B(2; 1).

- a. Calculer les coordonnées du point *I* milieu de [AB].
- b. Calculer la longueur du segment [AB].

a.
$$I\left(\frac{-1+2}{2}; \frac{5+1}{2}\right)$$

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les points A(-1; 5) et B(2; 1).

- a. Calculer les coordonnées du point *I* milieu de [AB].
- b. Calculer la longueur du segment [AB].

a.
$$I\left(\frac{-1+2}{2}; \frac{5+1}{2}\right) donc I\left(\frac{1}{2}; 3\right)$$
.

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les points A(-1; 5) et B(2; 1).

- a. Calculer les coordonnées du point I milieu de [AB].
- b. Calculer la longueur du segment [AB].

$$\text{a. } I\left(\frac{-1+2}{2};\frac{5+1}{2}\right) \text{ donc } I\left(\frac{1}{2};3\right).$$

b.
$$AB = \sqrt{(2 - (-1))^2 + (1 - 5)^2}$$

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les points A(-1; 5) et B(2; 1).

- a. Calculer les coordonnées du point I milieu de [AB].
- b. Calculer la longueur du segment [AB].

$$\text{a. }I\left(\frac{-1+2}{2};\frac{5+1}{2}\right) \text{ donc }I\left(\frac{1}{2};3\right).$$

b.
$$AB = \sqrt{(2 - (-1))^2 + (1 - 5)^2} = \sqrt{3^2 + (-4)^2}$$

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les points A(-1; 5) et B(2; 1).

- a. Calculer les coordonnées du point *I* milieu de [AB].
- b. Calculer la longueur du segment [AB].

$$\text{a. }I\left(\frac{-1+2}{2};\frac{5+1}{2}\right) \text{ donc }I\left(\frac{1}{2};3\right).$$

b.
$$AB = \sqrt{(2 - (-1))^2 + (1 - 5)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16}$$

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les points A(-1; 5) et B(2; 1).

- a. Calculer les coordonnées du point I milieu de [AB].
- b. Calculer la longueur du segment [AB].

$$\text{a. }I\left(\frac{-1+2}{2};\frac{5+1}{2}\right) \text{ donc }I\left(\frac{1}{2};3\right).$$

b.
$$AB = \sqrt{(2 - (-1))^2 + (1 - 5)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25}$$

Exemple

Soient, dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les points A(-1; 5) et B(2; 1).

- a. Calculer les coordonnées du point I milieu de [AB].
- b. Calculer la longueur du segment [AB].

$$\text{a. } I\left(\frac{-1+2}{2};\frac{5+1}{2}\right) \text{ donc } I\left(\frac{1}{2};3\right).$$

b.
$$AB = \sqrt{(2 - (-1))^2 + (1 - 5)^2} = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

Rappels

• Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si ils ont la même direction.

On convient que le vecteur nul, $\overrightarrow{0}$, est colinéaire à tout autre vecteurs.

Rappels

- Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si ils ont la même direction.

 On convient que le vecteur nul, $\overrightarrow{0}$, est colinéaire à tout autre vecteurs.
- Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs avec $\overrightarrow{u} \neq \overrightarrow{0}$.

Rappels

- Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si ils ont la même direction.

 On convient que le vecteur nul, $\overrightarrow{0}$, est colinéaire à tout autre vecteurs.
- Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs avec $\overrightarrow{u} \neq \overrightarrow{0}$.

 \overrightarrow{u} et \overrightarrow{V} sont colinéaires si et seulement si il existe un réel k tel que $\overrightarrow{V}=k\overrightarrow{u}$.

Rappels

- Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs avec $\overrightarrow{u} \neq \overrightarrow{0}$.
 - \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si il existe un réel k tel que $\overrightarrow{v}=k\overrightarrow{u}$.
- Deux droites (AB) et (CD) sont parallèles si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Rappels

- Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs avec $\overrightarrow{u} \neq \overrightarrow{0}$.
 - \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si il existe un réel k tel que $\overrightarrow{v}=k\overrightarrow{u}$.
- Deux droites (AB) et (CD) sont parallèles si et seulement si \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- Trois points $\overrightarrow{A}, \overrightarrow{B}$ et \overrightarrow{C} sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Propriété

Soient, dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et

$$\overrightarrow{V}\left(\begin{array}{c}a'\\b'\end{array}\right).$$

Propriété

Soient, dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et

$$\overrightarrow{V}\left(\begin{array}{c}a'\\b'\end{array}\right).$$

 \overrightarrow{u} et \overrightarrow{v} sont colinéaires si et seulement si ab' - a'b = 0.

Preuve

• $Si \overrightarrow{u}$ et \overrightarrow{v} sont colinéaires alors

Preuve

- $Si \overrightarrow{u}$ et \overrightarrow{v} sont colinéaires alors
 - soit $\overrightarrow{u} = \overrightarrow{0}$ ce qui signifie que a = 0 et b = 0 donc $ab' a'b = 0 \times b' a' \times 0 = 0$;

Preuve

- $Si \overrightarrow{u}$ et \overrightarrow{v} sont colinéaires alors
 - soit $\overrightarrow{u} = \overrightarrow{0}$ ce qui signifie que a = 0 et b = 0 donc $ab' a'b = 0 \times b' a' \times 0 = 0$;
 - $ab' a'b = 0 \times b' a' \times 0 = 0;$ • soit $\overrightarrow{u} \neq \overrightarrow{0}$ et alors il existe un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Preuve

- $Si \overrightarrow{u}$ et \overrightarrow{v} sont colinéaires alors
 - soit $\overrightarrow{u} = \overrightarrow{0}$ ce qui signifie que a = 0 et b = 0 donc $ab' a'b = 0 \times b' a' \times 0 = 0$;
 - $ab' a'b = 0 \times b' a' \times 0 = 0;$ soit $\overrightarrow{u} \neq \overrightarrow{0}$ et alors il existe un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}.$

Le vecteur \overrightarrow{u} a pour coordonnées $\begin{pmatrix} a \\ b \end{pmatrix}$

Preuve

- $Si \overrightarrow{u}$ et \overrightarrow{v} sont colinéaires alors
 - soit $\overrightarrow{u} = \overrightarrow{0}$ ce qui signifie que a = 0 et b = 0 donc $ab' a'b = 0 \times b' a' \times 0 = 0$;
 - $ab' a'b = 0 \times b' a' \times 0 = 0$; • soit $\overrightarrow{u} \neq \overrightarrow{0}$ et alors il existe un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Le vecteur \overrightarrow{u} a pour coordonnées $\begin{pmatrix} a \\ b \end{pmatrix}$ donc le vecteur $k\overrightarrow{u}$ a pour coordonnées $\begin{pmatrix} ka \\ kb \end{pmatrix}$

Preuve

- - soit $\overrightarrow{u} = \overrightarrow{0}$ ce qui signifie que a = 0 et b = 0 donc
 - $ab' a'b = 0 \times b' a' \times 0 = 0;$ soit $\overrightarrow{u} \neq \overrightarrow{0}$ et alors il existe un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Le vecteur \overrightarrow{u} a pour coordonnées $\begin{pmatrix} a \\ b \end{pmatrix}$ donc le vecteur $k\overrightarrow{u}$ a pour coordonnées $\begin{pmatrix} ka \\ kb \end{pmatrix}$ et comme $\overrightarrow{v} = k\overrightarrow{u}$, on en déduit que a' = ka et b' = kb. On a alors.

Preuve

- - soit $\overrightarrow{u} = \overrightarrow{0}$ ce qui signifie que a = 0 et b = 0 donc
 - $ab' a'b = 0 \times b' a' \times 0 = 0;$ soit $\overrightarrow{u} \neq \overrightarrow{0}$ et alors il existe un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Le vecteur \overrightarrow{u} a pour coordonnées $\left(\begin{array}{c} a \\ b \end{array} \right)$ donc le vecteur k \overrightarrow{u} a pour coordonnées $\begin{pmatrix} ka \\ kb \end{pmatrix}$ et comme $\overrightarrow{V} = k\overrightarrow{u}$, on en déduit que a' = ka et b' = kb. On a alors.

$$ab' - a'b = a \times kb - ka \times b$$

Preuve

- - soit $\overrightarrow{u} = \overrightarrow{0}$ ce qui signifie que a = 0 et b = 0 donc
 - $ab' a'b = 0 \times b' a' \times 0 = 0;$ soit $\overrightarrow{u} \neq \overrightarrow{0}$ et alors il existe un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Le vecteur \overrightarrow{u} a pour coordonnées $\begin{pmatrix} a \\ b \end{pmatrix}$ donc le vecteur $k\overrightarrow{u}$ a pour coordonnées $\begin{pmatrix} ka \\ kb \end{pmatrix}$ et comme $\overrightarrow{v}=k\overrightarrow{u}$, on en déduit que a' = ka et b' = kb. On a alors.

$$ab' - a'b = a \times kb - ka \times b = kab - kab$$

Preuve

- $Si \overrightarrow{u}$ et \overrightarrow{V} sont colinéaires alors
 - soit $\overrightarrow{u} = \overrightarrow{0}$ ce qui signifie que a = 0 et b = 0 donc $ab' a'b = 0 \times b' a' \times 0 = 0$;
 - $ab' a'b = 0 \times b' a' \times 0 = 0;$ soit $\overrightarrow{u} \neq \overrightarrow{0}$ et alors il existe un réel k tel que $\overrightarrow{v} = k \overrightarrow{u}$.

Le vecteur \overrightarrow{u} a pour coordonnées $\begin{pmatrix} a \\ b \end{pmatrix}$ donc le vecteur $k\overrightarrow{u}$ a pour coordonnées $\begin{pmatrix} ka \\ kb \end{pmatrix}$ et comme $\overrightarrow{v}=k\overrightarrow{u}$, on en déduit que a'=ka et b'=kb. On a alors,

$$ab' - a'b = a \times kb - ka \times b = kab - kab = 0$$

Preuve

- $Si \overrightarrow{u}$ et \overrightarrow{V} sont colinéaires alors
 - soit $\overrightarrow{u} = \overrightarrow{0}$ ce qui signifie que a = 0 et b = 0 donc $ab' a'b = 0 \times b' a' \times 0 = 0$;
 - $ab' a'b = 0 \times b' a' \times 0 = 0;$ soit $\overrightarrow{u} \neq \overrightarrow{0}$ et alors il existe un réel k tel que $\overrightarrow{v} = k\overrightarrow{u}$.

Le vecteur \overrightarrow{u} a pour coordonnées $\begin{pmatrix} a \\ b \end{pmatrix}$ donc le vecteur $k\overrightarrow{u}$ a pour coordonnées $\begin{pmatrix} ka \\ kb \end{pmatrix}$ et comme $\overrightarrow{v}=k\overrightarrow{u}$, on en déduit que a'=ka et b'=kb. On a alors,

$$ab' - a'b = a \times kb - ka \times b = kab - kab = 0$$

Ainsi, si \overrightarrow{u} et \overrightarrow{v} sont colinéaires alors ab' - a'b = 0.

• Réciproquement, si ab' - a'b = 0 alors ab' = a'b donc,

- Réciproquement, si ab' a'b = 0 alors ab' = a'b donc,
 - soit (a,b) = (0,0), c'est-à-dire $\overrightarrow{u} = \overrightarrow{0}$, et alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires;

- Réciproquement, si ab' a'b = 0 alors ab' = a'b donc,
 - soit (a,b) = (0,0), c'est-à-dire $\overrightarrow{u} = \overrightarrow{0}$, et alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires;
 - soit $(a, b) \neq (0, 0)$ ce qui signifie que $a \neq 0$ ou $b \neq 0$.

- Réciproquement, si ab' a'b = 0 alors ab' = a'b donc,
 - soit (a,b) = (0,0), c'est-à-dire $\overrightarrow{u} = \overrightarrow{0}$, et alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires;
 - soit $(a, b) \neq (0, 0)$ ce qui signifie que $a \neq 0$ ou $b \neq 0$.

Si, par exemple, $a \neq 0$ alors l'égalité ab' = a'b équivaut à $b' = \frac{a'b}{a} = \frac{a'}{a} \times b$.

- Réciproquement, si ab' a'b = 0 alors ab' = a'b donc,
 - soit (a,b) = (0,0), c'est-à-dire $\overrightarrow{u} = \overrightarrow{0}$, et alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires;
 - soit $(a,b) \neq (0,0)$ ce qui signifie que $a \neq 0$ ou $b \neq 0$.

Si, par exemple, $a \neq 0$ alors l'égalité ab' = a'b équivaut à $b' = \frac{a'b}{a} = \frac{a'}{a} \times b$.

Comme, de plus, $a' = \frac{a'}{a} \times a$, on en déduit qu'alors

- Réciproquement, si ab' a'b = 0 alors ab' = a'b donc,
 - soit (a,b) = (0,0), c'est-à-dire $\overrightarrow{u} = \overrightarrow{0}$, et alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires;
 - soit $(a,b) \neq (0,0)$ ce qui signifie que $a \neq 0$ ou $b \neq 0$.

Si, par exemple, $a \neq 0$ alors l'égalité ab' = a'b équivaut à $b' = \frac{a'b}{a} = \frac{a'}{a} \times b$.

Comme, de plus, $a' = \frac{a'}{a} \times a$, on en déduit qu'alors

$$\overrightarrow{V} = \frac{a'}{a}\overrightarrow{u}$$

- Réciproquement, si ab' a'b = 0 alors ab' = a'b donc,
 - soit (a,b) = (0,0), c'est-à-dire $\overrightarrow{u} = \overrightarrow{0}$, et alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires;
 - soit $(a, b) \neq (0, 0)$ ce qui signifie que $a \neq 0$ ou $b \neq 0$.

Si, par exemple, $a \neq 0$ alors l'égalité ab' = a'b équivaut à $b' = \frac{a'b}{a} = \frac{a'}{a} \times b$.

Comme, de plus, $a' = \frac{a'}{a} \times a$, on en déduit qu'alors

$$\overrightarrow{V} = \frac{a'}{a}\overrightarrow{U}$$

Ce qui signifie que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires.

- Réciproquement, si ab' a'b = 0 alors ab' = a'b donc,
 - soit (a,b) = (0,0), c'est-à-dire $\overrightarrow{u} = \overrightarrow{0}$, et alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires;
 - soit $(a, b) \neq (0, 0)$ ce qui signifie que $a \neq 0$ ou $b \neq 0$.

Si, par exemple, $a \neq 0$ alors l'égalité ab' = a'b équivaut à $b' = \frac{a'b}{a} = \frac{a'}{a} \times b$.

Comme, de plus, $a' = \frac{a'}{a} \times a$, on en déduit qu'alors

$$\overrightarrow{V} = \frac{a'}{a}\overrightarrow{U}$$

Ce qui signifie que les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires. Ainsi, si ab' - a'b = 0 alors \overrightarrow{u} et \overrightarrow{v} sont colinéaires.

Définition

Soient, dans un repère **orthonormé** $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a' \\ b' \end{pmatrix}$.

Définition

Soient, dans un repère **orthonormé** $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a' \\ b' \end{pmatrix}$.

Le réel ab'-a'b est appelé le **déterminant** des vecteurs \overrightarrow{u} et \overrightarrow{v} . On note

Définition

Soient, dans un repère **orthonormé** $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$, les vecteurs $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} a' \\ b' \end{pmatrix}$.

Le réel ab' - a'b est appelé le **déterminant** des vecteurs \overrightarrow{u} et \overrightarrow{v} . On note

$$\det(\overrightarrow{u},\overrightarrow{v})=ab'-a'b$$

Remarque

Lorsqu'on est dans un repère orthonormé, la propriété précédente peut donc s'écrire

Remarque

Lorsqu'on est dans un repère orthonormé, la propriété précédente peut donc s'écrire

$$\overrightarrow{u}$$
 $\left(\begin{array}{c} a \\ b \end{array}\right)$ et \overrightarrow{v} $\left(\begin{array}{c} a' \\ b' \end{array}\right)$ sont colinéaires si et seulement si
$$\det(\overrightarrow{u},\overrightarrow{v})=ab'-a'b=0$$

Applications

Dans le plan muni d'un repère orthonormé.

Applications

Dans le plan muni d'un repère orthonormé.

• Pour savoir si trois points A, B et C sont alignés, on pourra tester si le déterminant des vecteurs \overrightarrow{AB} et \overrightarrow{AC} est nul.

Applications

Dans le plan muni d'un repère orthonormé.

- Pour savoir si trois points A, B et C sont alignés, on pourra tester si le déterminant des vecteurs \overrightarrow{AB} et \overrightarrow{AC} est nul.
- Pour savoir si deux droites (AB) et (CD) sont parallèles, on pourra tester si le déterminant des vecteurs \overrightarrow{AB} et \overrightarrow{CD} est nul.

Exemples

• Soient, dans un repère orthonormé du plan, les points A(3; 2), B(-1; 5), C(15; -7). Les points A, B et C sont-ils alignés?

Exemples

• Soient, dans un repère orthonormé du plan, les points A(3; 2), B(-1; 5), C(15; -7). Les points A, B et C sont-ils alignés?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}

Exemples

• Soient, dans un repère orthonormé du plan, les points A(3; 2), B(-1; 5), C(15; -7). Les points A, B et C sont-ils alignés?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}

$$\overrightarrow{AB} \left(\begin{array}{c} -1-3 \\ 5-2 \end{array} \right) \qquad \overrightarrow{AC} \left(\begin{array}{c} 15-3 \\ -7-2 \end{array} \right)$$

Exemples

• Soient, dans un repère orthonormé du plan, les points A(3; 2), B(-1; 5), C(15; -7). Les points A, B et C sont-ils alignés?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}

$$\overrightarrow{AB} \begin{pmatrix} -1 - 3 \\ 5 - 2 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 15 - 3 \\ -7 - 2 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} -4 \\ 3 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 12 \\ -9 \end{pmatrix}$$

Exemples

• Soient, dans un repère orthonormé du plan, les points A(3; 2), B(-1; 5), C(15; -7). Les points A, B et C sont-ils alignés?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}

$$\overrightarrow{AB} \begin{pmatrix} -1 - 3 \\ 5 - 2 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 15 - 3 \\ -7 - 2 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} -4 \\ 3 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 12 \\ -9 \end{pmatrix}$$

On calcule le déterminant de ces deux vecteurs

Exemples

• Soient, dans un repère orthonormé du plan, les points A(3; 2), B(-1; 5), C(15; -7). Les points A, B et C sont-ils alignés?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}

$$\overrightarrow{AB} \begin{pmatrix} -1 - 3 \\ 5 - 2 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 15 - 3 \\ -7 - 2 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} -4 \\ 3 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 12 \\ -9 \end{pmatrix}$$

On calcule le déterminant de ces deux vecteurs

$$\det\left(\overrightarrow{AB},\overrightarrow{AC}\right) = -4 \times (-9) - 12 \times 3$$

Exemples

• Soient, dans un repère orthonormé du plan, les points A(3; 2), B(-1; 5), C(15; -7). Les points A, B et C sont-ils alignés?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}

$$\overrightarrow{AB} \begin{pmatrix} -1 - 3 \\ 5 - 2 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 15 - 3 \\ -7 - 2 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} -4 \\ 3 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 12 \\ -9 \end{pmatrix}$$

On calcule le déterminant de ces deux vecteurs

$$\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = -4 \times (-9) - 12 \times 3 = 36 - 36$$

Exemples

• Soient, dans un repère orthonormé du plan, les points A(3; 2), B(-1; 5), C(15; -7). Les points A, B et C sont-ils alignés?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}

$$\overrightarrow{AB} \begin{pmatrix} -1 - 3 \\ 5 - 2 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 15 - 3 \\ -7 - 2 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} -4 \\ 3 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 12 \\ -9 \end{pmatrix}$$

$$\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = -4 \times (-9) - 12 \times 3 = 36 - 36 = 0$$

Exemples

• Soient, dans un repère orthonormé du plan, les points A(3; 2), B(-1; 5), C(15; -7). Les points A, B et C sont-ils alignés?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC}

$$\overrightarrow{AB} \begin{pmatrix} -1 - 3 \\ 5 - 2 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 15 - 3 \\ -7 - 2 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} -4 \\ 3 \end{pmatrix} \qquad \overrightarrow{AC} \begin{pmatrix} 12 \\ -9 \end{pmatrix}$$

On calcule le déterminant de ces deux vecteurs

$$\det\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = -4 \times (-9) - 12 \times 3 = 36 - 36 = 0$$

Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires donc les points A, B et C sont alignés.

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB} \left(\begin{array}{c} 6-4 \\ -0,8-1 \end{array} \right) \qquad \overrightarrow{CD} \left(\begin{array}{c} 11,2-7,2 \\ -2,4-1,3 \end{array} \right)$$

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB} \begin{pmatrix} 6-4 \\ -0,8-1 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 11,2-7,2 \\ -2,4-1,3 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ -1,8 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 4 \\ -3,7 \end{pmatrix}$$

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB} \begin{pmatrix} 6-4 \\ -0,8-1 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 11,2-7,2 \\ -2,4-1,3 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ -1,8 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 4 \\ -3,7 \end{pmatrix}$$

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB} \begin{pmatrix} 6-4 \\ -0,8-1 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 11,2-7,2 \\ -2,4-1,3 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ -1,8 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 4 \\ -3,7 \end{pmatrix}$$

$$\det\left(\overrightarrow{AB},\overrightarrow{CD}\right) = 2 \times (-3,7) - 4 \times (-1,8)$$

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB} \begin{pmatrix} 6-4 \\ -0,8-1 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 11,2-7,2 \\ -2,4-1,3 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ -1,8 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 4 \\ -3,7 \end{pmatrix}$$

$$\det\left(\overrightarrow{AB},\overrightarrow{CD}\right) = 2 \times (-3,7) - 4 \times (-1,8) = -7,4+7,2$$

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB} \begin{pmatrix} 6-4 \\ -0,8-1 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 11,2-7,2 \\ -2,4-1,3 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ -1,8 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 4 \\ -3,7 \end{pmatrix}$$

$$\det\left(\overrightarrow{AB}, \overrightarrow{CD}\right) = 2 \times (-3, 7) - 4 \times (-1, 8) = -7, 4 + 7, 2 = -0, 2$$

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB} \begin{pmatrix} 6-4 \\ -0,8-1 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 11,2-7,2 \\ -2,4-1,3 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ -1,8 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 4 \\ -3,7 \end{pmatrix}$$

$$\det\left(\overrightarrow{AB}, \overrightarrow{CD}\right) = 2 \times (-3, 7) - 4 \times (-1, 8) = -7, 4 + 7, 2 = -0, 2 \neq 0$$

• Soient, dans un repère orthonormé du plan, les points A(4;1), B(6;-0,8), C(7,2;1,3) et D(11,2;-2,4). Les droites (AB) et (CD) sont-elles parallèles?

On calcule les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB} \begin{pmatrix} 6-4 \\ -0,8-1 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 11,2-7,2 \\ -2,4-1,3 \end{pmatrix}$$

$$\overrightarrow{AB} \begin{pmatrix} 2 \\ -1,8 \end{pmatrix} \qquad \overrightarrow{CD} \begin{pmatrix} 4 \\ -3,7 \end{pmatrix}$$

On calcule le déterminant de ces deux vecteurs

$$\det\left(\overrightarrow{AB}, \overrightarrow{CD}\right) = 2 \times (-3, 7) - 4 \times (-1, 8) = -7, 4 + 7, 2 = -0, 2 \neq 0$$

Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ne sont pas colinéaires donc les droites (AB) et (CD) ne sont pas parallèles. Les droites (AB) et (CD) sont donc sécantes.

Définition

On appelle **équation de droite** (ou plus généralement équation de courbe) toute équation d'inconnues x et y dont l'ensemble des solutions est exactement l'ensemble des coordonnées (x; y) des points de la droite (ou de la courbe).

Conséquence

Un point de coordonnées $(x_0; y_0)$ appartient donc à la droite (ou la courbe) si et seulement si $(x_0; y_0)$ est solution de l'équation.

Définition

Un vecteur non nul \overrightarrow{u} est un **vecteur directeur** d'une droite Δ si et seulement si pour tous les points A et B appartenant à Δ , \overrightarrow{u} est colinéaire à \overrightarrow{AB} .

Remarque

 \overrightarrow{u} est un vecteur directeur de Δ si et seulement si \overrightarrow{u} et Δ ont la même direction.

Conséquence

Si Δ est une droite passant par le point $A(x_A; y_A)$ et admettant le vecteur $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ pour vecteur directeur alors

Conséquence

Si Δ est une droite passant par le point $A(x_A; y_A)$ et admettant le vecteur $\overrightarrow{u}\begin{pmatrix} a \\ b \end{pmatrix}$ pour vecteur directeur alors

$$M(x;y) \in \Delta$$
 si et seulement si $\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$ et $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ sont colinéaires

Conséquence

Si Δ est une droite passant par le point $A(x_A; y_A)$ et admettant le vecteur \overrightarrow{u} $\begin{pmatrix} a \\ b \end{pmatrix}$ pour vecteur directeur alors

$$M(x;y) \in \Delta$$
 si et seulement si $\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$ et $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ sont colinéaires

ce qui équivaut à $\det(\overrightarrow{AM}, \overrightarrow{u})$

Conséquence

Si Δ est une droite passant par le point $A(x_A; y_A)$ et admettant le vecteur $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ pour vecteur directeur alors

$$M(x;y) \in \Delta$$
 si et seulement si $\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$ et $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ sont colinéaires

ce qui équivaut à
$$\det(\overrightarrow{AM}, \overrightarrow{u}) = (x - x_A) \times b - a(y - y_A)$$

Conséquence

Si Δ est une droite passant par le point $A(x_A; y_A)$ et admettant le vecteur $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ pour vecteur directeur alors

$$M(x;y) \in \Delta$$
 si et seulement si $\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$ et $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ sont colinéaires

ce qui équivaut à
$$\det(\overrightarrow{AM}, \overrightarrow{u}) = (x - x_A) \times b - a(y - y_A) = 0.$$

Conséquence

Si Δ est une droite passant par le point $A(x_A; y_A)$ et admettant le vecteur $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ pour vecteur directeur alors

$$M(x;y) \in \Delta$$
 si et seulement si $\overrightarrow{AM} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}$ et $\overrightarrow{u} \begin{pmatrix} a \\ b \end{pmatrix}$ sont colinéaires

ce qui équivaut à
$$\det(\overrightarrow{AM}, \overrightarrow{u}) = (x - x_A) \times b - a(y - y_A) = 0.$$

En développant et réduisant le membre de gauche, on obtient une nouvelle équation caractérisant la droite Δ .

Propriété - Définition

Pour toute droite d du plan, il existe trois réels a,b et c $((a,b) \neq (0,0))$ tels que

$$M(x; y) \in d$$
 si et seulement si $ax + by + c = 0$.

L'équation ax + by + c = 0 est alors une **équation cartésienne** de la droite d.

Exemple

Soient les points A(6; 2) et B(-1; 3).

Exemple

Soient les points A(6; 2) et B(-1; 3).

Déterminer une équation cartésienne de la droite (AB).

Exemple

Soient les points A(6; 2) et B(-1; 3).

Déterminer une équation cartésienne de la droite (AB).

Le vecteur $\overrightarrow{AB}\begin{pmatrix} -1-6\\ 3-2 \end{pmatrix}$ est un vecteur directeur de la droite (AB). On en déduit que

Exemple

Soient les points A(6; 2) et B(-1; 3).

Déterminer une équation cartésienne de la droite (AB).

Le vecteur $\overrightarrow{AB}\begin{pmatrix} -1-6\\ 3-2 \end{pmatrix}$ est un vecteur directeur de la droite (AB). On en déduit que

$$M(x;y) \in (AB)$$
 si et seulement si $\overrightarrow{AM} \begin{pmatrix} x-6 \\ y-2 \end{pmatrix}$ et $\overrightarrow{AB} \begin{pmatrix} -7 \\ 1 \end{pmatrix}$ sont colinéaires

ce qui équivaut à

ce qui équivaut à

$$\det(\overrightarrow{AM}, \overrightarrow{AB}) = 1 \times (x - 6) - (-7)(y - 2) = 0$$

ce qui équivaut à

$$\det(\overrightarrow{AM}, \overrightarrow{AB}) = 1 \times (x - 6) - (-7)(y - 2) = 0$$

ce qui équivaut à
$$x - 6 + 7y - 14 = 0$$

ce qui équivaut à

$$\det(\overrightarrow{AM}, \overrightarrow{AB}) = 1 \times (x - 6) - (-7)(y - 2) = 0$$

ce qui équivaut à x - 6 + 7y - 14 = 0 ce qui équivaut à x + 7y - 20 = 0.

ce qui équivaut à

$$\det(\overrightarrow{AM}, \overrightarrow{AB}) = 1 \times (x - 6) - (-7)(y - 2) = 0$$

ce qui équivaut à x - 6 + 7y - 14 = 0 ce qui équivaut à x + 7y - 20 = 0.

Une équation cartésienne de la droite (AB) est donc (AB) : x + 7y - 20 = 0.

Propriété - Définition

Une droite admet une équation de la forme

$$y = ax + b$$
 ou $x = c$ $(a, b, c \text{ r\'eels})$

Propriété - Définition

Une droite admet une équation de la forme

$$y = ax + b$$
 ou $x = c$ $(a, b, c \text{ r\'eels})$

Cette équation est appelée **l'équation réduite de la droite**.

Indication de preuve

A partir d'une équation cartésienne, on isole l'inconnue y si elle apparaît dans l'équation et sinon on isole l'inconnue x.

Intersection de deux droites

Lorsque deux droites sont sécantes, les coordonnées de leur point d'intersection doivent être solution pour les deux équations des deux droites.

Pour déterminer les solutions communes à deux équations, on résout un **système d'équations**.

Exemple

Soient les droites Δ_1 et Δ_2 d'équations :

$$\Delta_1 : 2x + 3y - 1 = 0$$
 $\Delta_2 : -x + 2y - 3 = 0$

Exemple

Soient les droites Δ_1 et Δ_2 d'équations :

$$\Delta_1 : 2x + 3y - 1 = 0$$
 $\Delta_2 : -x + 2y - 3 = 0$

Déterminer les coordonnées du point d'intersection de ces deux droites.

Exemple

Soient les droites Δ_1 et Δ_2 d'équations :

$$\Delta_1 : 2x + 3y - 1 = 0$$
 $\Delta_2 : -x + 2y - 3 = 0$

Déterminer les coordonnées du point d'intersection de ces deux droites.

Pour déterminer les coordonnées du point d'intersection, on résout le système

$$\begin{cases} 2x + 3y - 1 = 0 \\ -x + 2y - 3 = 0 \end{cases}$$

Il est facile, dans la deuxième équation, d'exprimer l'inconnue x à l'aide de y, on a donc

Il est facile, dans la deuxième équation, d'exprimer l'inconnue x à l'aide de y, on a donc

$$\begin{cases} 2x + 3y - 1 = 0 \\ -x + 2y - 3 = 0 \end{cases}$$

Il est facile, dans la deuxième équation, d'exprimer l'inconnue x à l'aide de y, on a donc

$$\begin{cases} 2x + 3y - 1 = 0 \\ -x + 2y - 3 = 0 \end{cases} \iff \begin{cases} 2x + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$

Il est facile, dans la deuxième équation, d'exprimer l'inconnue x à l'aide de y, on a donc

$$\begin{cases} 2x + 3y - 1 = 0 \\ -x + 2y - 3 = 0 \end{cases} \iff \begin{cases} 2x + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$

On peut alors remplacer l'inconnue x par son expression à l'aide de y dans la première équation

Il est facile, dans la deuxième équation, d'exprimer l'inconnue x à l'aide de y, on a donc

$$\begin{cases} 2x + 3y - 1 = 0 \\ -x + 2y - 3 = 0 \end{cases} \iff \begin{cases} 2x + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$

On peut alors remplacer l'inconnue x par son expression à l'aide de y dans la première équation

$$\begin{cases} 2x + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$

Il est facile, dans la deuxième équation, d'exprimer l'inconnue x à l'aide de y, on a donc

$$\begin{cases} 2x + 3y - 1 = 0 \\ -x + 2y - 3 = 0 \end{cases} \iff \begin{cases} 2x + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$

On peut alors remplacer l'inconnue x par son expression à l'aide de y dans la première équation

$$\begin{cases} 2x + 3y - 1 = 0 \\ 2y - 3 = x \end{cases} \iff \begin{cases} 2(2y - 3) + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$

$$\begin{cases} 2(2y-3) + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$

$$\begin{cases} 2(2y-3) + 3y - 1 = 0 \\ 2y - 3 = x \end{cases} \iff \begin{cases} 4y - 6 + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$

$$\begin{cases} 2(2y-3) + 3y - 1 = 0 \\ 2y - 3 = x \end{cases} \iff \begin{cases} 4y - 6 + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$
$$\iff \begin{cases} 7y - 7 = 0 \\ 2y - 3 = x \end{cases}$$

$$\begin{cases} 2(2y-3) + 3y - 1 = 0 \\ 2y - 3 = x \end{cases} \iff \begin{cases} 4y - 6 + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$
$$\iff \begin{cases} 7y - 7 = 0 \\ 2y - 3 = x \end{cases} \iff \begin{cases} 7y = 7 \\ x = 2y - 3 \end{cases}$$

$$\begin{cases} 2(2y-3) + 3y - 1 = 0 \\ 2y - 3 = x \end{cases} \iff \begin{cases} 4y - 6 + 3y - 1 = 0 \\ 2y - 3 = x \end{cases}$$
$$\iff \begin{cases} 7y - 7 = 0 \\ 2y - 3 = x \end{cases} \iff \begin{cases} 7y = 7 \\ x = 2y - 3 \end{cases}$$
$$\iff \begin{cases} y = 1 \\ x = 2 \times 1 - 3 = -1 \end{cases}$$

Le point d'intersection des droites Δ_1 et Δ_2 a donc pour coordonnées (-1;1) (on fait bien attention à ce que x soit la première coordonnée).

Le point d'intersection des droites Δ_1 et Δ_2 a donc pour coordonnées (-1;1) (on fait bien attention à ce que x soit la première coordonnée).

On peut vérifier que le couple (-1;1) est bien solution des deux équations des deux droites.